Local invertible analytic solutions for an iterative differential equation related to a discrete derivatives sequence

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Exist Local Analytic Solutions of an Iterative Functional Differential Equation

This paper is concerned with an iterative functional differential equation x′ x r z = c0z+ c1x z + c2x x z + · · · + cmx m z , where r and m are nonnegative integers, x 0 z = z x 1 z = x z x 3 z = x x x z , etc. are the iterates of the function x z , and ∑mj=0 cj = 0. By constructing a convergent power series solution y z of a companion equation of the form αy ′ αr+1z = y ′ αz ∑mj=0 cjy αz , an...

متن کامل

An analytic solution for a non-local initial-boundary value problem including a partial differential equation with variable coefficients

‎This paper considers a non-local initial-boundary value problem containing a first order partial differential equation with variable coefficients‎. ‎At first‎, ‎the non-self-adjoint spectral problem is derived‎. ‎Then its adjoint problem is calculated‎. ‎After that‎, ‎for the adjoint problem the associated eigenvalues and the subsequent eigenfunctions are determined‎. ‎Finally the convergence ...

متن کامل

Analytic Solutions for Iterative Functional Differential Equations

Because of its technical difficulties the existence of analytic solutions to the iterative differential equation x′(z) = x(az + bx(z) + cx′(z)) is a source of open problems. In this article we obtain analytic solutions, using Schauder’s fixed point theorem. Also we present a unique solution which is a nonconstant polynomial in the complex field.

متن کامل

Analytic Solutions for a Functional Differential Equation Related to a Traffic Flow Model

and Applied Analysis 3 Proof. If we let h s ∑∞ n 1 ans n and substituting into 1.3 , we have α2 ∞ ∑ n 0 n 1 λ − 1 an 1s 2α ∞ ∑ n 1 ( n−1 ∑ i 0 i 1 ( λn−i − 1 )( λ − 1 ) an−iai 1 ) s ∞ ∑ n 2 ( n−2 ∑ i 0 n−i−1 ∑ k 1 i 1 ( λn−k−i − 1 )( λ − 1 )( λ − 1 ) an−k−iakai 1 ) s β ∞ ∑ n 1 ( n−1 ∑ i 0 i 1 ( λn−i − 1 )2 an−iai 1 ) s. 2.3 Comparing coefficients we obtain α2 ( λ0 − 1 ) a1 0, 2.4 α2 n 1 λ − 1 a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2007

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2007.01.033